Successful Treatment of a Giant Emphysematous Bulla by Bronchoscopic Placement of Endobronchial Valves

Marc Noppen, Jean-Claude Tellings, Tom Dekeukeleire, Bjorn Dieriks, Shane Hanon, Jan D’Haese, Marc Meysman and Walter Vincken

Chest 2006;130;1563-1565
DOI 10.1378/chest.130.5.1563

The online version of this article, along with updated information and services can be found online on the World Wide Web at: http://chestjournal.org/cgi/content/abstract/130/5/1563
Successful Treatment of a Giant Emphysematous Bulla by Bronchoscopic Placement of Endobronchial Valves*

Marc Noppen, MD, PhD, FCCP; Jean-Claude Tellings, MD; Tom Dekeukeleire, MD; Bjorn Dieriks, MD; Shane Hanon, MD, Jan D’Haese, MD; Marc Meysman, MD, FCCP, and Walter Vincken, MD, PhD, FCCP

Surgical bullectomy is the treatment of choice for giant emphysematous bulla. We report a case of successful nonsurgical treatment with bronchoscopic placement of one-way endobronchial valves that are currently under investigation for the treatment of end-stage emphysema. In patients who are poor surgical candidates, this noninvasive bronchoscopic treatment may represent a valuable alternative.

(CHEST 2006; 130:1563–1565)

Key words: bronchoscopic; emphysema; endobronchial valve; giant bulla; treatment

Abbreviations: EBV = endobronchial valve; GEB = giant emphysematous bulla; RV = residual volume; TLC = total lung capacity

Giant emphysematous bulla (GEB) is defined as a large bulla occupying at least one third of a hemithorax. Bullae are thought to be in contact with the bronchial tree; they are preferentially filled during inspiration, causing collapse of the adjacent (more) normal lung parenchyma. The fact that they do not participate in meaningful gas exchange as well as their space occupancy (interfering with normal respiratory mechanics) leads to increased work of breathing with associated exercise limitation and dyspnea.

The natural history of GEB is one of enlargement causing worsening dyspnea; the rate of expansion, however, is unpredictable. In patients with GEB occupying at least half of the volume of a hemithorax, surgical bullectomy is the treatment of choice. Bullectomy causes significant improvements in dyspnea, gas exchange, pulmonary function, and exercise capacity, the best results being obtained in the larger GEB. Improvements persist for at least 3 to 4 years but start to decline afterwards. Although reported early mortality rates after bullectomy are low (from 0 to 2.5%), surgery is not without risk in these compromised patients: complications include prolonged air leak for > 7 days (53%), atrial fibrillation (12%), postoperative mechanical ventilation (9%), and pneumonia (5%). Safer alternative treatments therefore would be welcomed.

Endobronchial blockage with one-way valves (Zephyr; Emphasys Medical; Redwood City, CA) is a new bronchoscopic treatment approach developed to obtain less invasive, reversible, and safer lung volume reduction in patients with heterogeneous emphysema, as compared to classical lung volume reduction surgery. Preliminary results in uncontrolled pilot studies have been promising, and results of a multicenter, prospective, randomized controlled trial are awaited. We present a patient with a symptomatic, progressively expanding GEB at the left lower lobe that was successfully treated by bronchoscopic placement of four endobronchial valves (EBVs) in the left lower lobe segmental bronchi.

CASE REPORT

A 57-year-old white man (ex-smoker, 12 pack-years) was referred to our clinic for treatment of a left lower lobe GEB. He had a history of bilateral pleuritis. COPD with emphysema was diagnosed in 1998. In 2003, CT scan of the thorax showed a large, 10 cm in diameter GEB at the left lower lobe. He was treated with tiotropium, 18 μg qd, and salmeterol-fluticasone, 50/5,000 μg bid. In 2005, he had progressively increasing dyspnea at exertion. Chest radiography showed a large GEB at the left lower hemithorax (Fig 1). CT scan confirmed the presence of a large, 20 cm in diameter GEB at the left lower lobe, with compression atelectasis of the adjacent pulmonary parenchyma (Fig 2). Pulmonary function tests showed a postbronchodilator FEV₁ of 0.91 L (29% of predicted); FEV₁/FVC ratio, 29%; total lung capacity (TLC), 8.68 L (133% of predicted); functional residual capacity, 6.35 L (186% of predicted); residual volume (RV), 5.55 L (245% of predicted); and diffusion capacity of the lung for carbon monoxide, 14.5 mL/mm Hg/min (54% of predicted).

A surgical bullectomy was proposed, but the patient was reluctant because of the morbidity and (small) mortality associated with this procedure, and he was referred for consideration of endobronchial treatment. After informed consent by the patient, rigid bronchoscopy (Storz; Tutlingen, Germany) was performed under total IV anesthesia (alfentanil, propofol, atracurium). Ventilation and oxygenation were assured using high-frequency jet ventilation and oxygen supplementation.

Endobronchial blockage with one-way valves (Zephyr; Emphasys Medical; Redwood City, CA) is a new bronchoscopic treatment approach developed to obtain less invasive, reversible, and safer lung volume reduction in patients with heterogeneous emphysema, as compared to classical lung volume reduction surgery. Preliminary results in uncontrolled pilot studies have been promising, and results of a multicenter, prospective, randomized controlled trial are awaited. We present a patient with a symptomatic, progressively expanding GEB at the left lower lobe that was successfully treated by bronchoscopic placement of four endobronchial valves (EBVs) in the left lower lobe segmental bronchi.

*From the Interventional Endoscopy Clinic (Drs. Noppen, Dekeukeleire, Dieriks, Hanon, Meysman, and Vincken) and Anaesthesiology Department (Dr. D’Haese), University Hospital AZ-VUB, Brussels, and Respiratory Division (Dr. Tellings), Clinique St. Elisabeth, Heusy, Belgium. Dr. Noppen is study coordinator of the VENT trial sponsored by Emphasys Medical, Redwood City, CA.

The authors have not conflicts of interest to disclose.

Manuscript received April 11, 2006; revision accepted June 13, 2006.

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/misc/reprints.shtml).

Correspondence to: Marc Noppen, MD, PhD, FCCP, Head, Interventional Endoscopy Clinic, University Hospital AZ-VUB, 101, Laarbeeklaan, B 1090 Brussels, Belgium; e-mail: marc.noppen@az.vub.ac.be

DOI: 10.1378/chest.130.5.1563
ventilation delivered via the side port of the bronchoscope. Four Zephyr 4.0 EBVs were sequentially positioned in the four segmental lower lobe bronchi (B6, B8, B9, B10) through a large-channel flexible bronchoscope that was passed through the rigid bronchoscope, and following the instructions supplied with the valves. The procedure lasted 20 min and was uneventful. Subjective improvement of dyspnea was already noted on the next day, and the patient was discharged. One month after the procedure, there was a significant subjective improvement in dyspnea that was confirmed by pulmonary function testing (postbronchodilator FEV₁, 1.41 L [43% of predicted]; FEV₁/FVC ratio, 39%; TLC, 7.47 L [112% of predicted]; functional residual capacity, 5.06 L [147% of predicted]; and RV, 4.05 L [178% of predicted]). Diffusion capacity of the lung for carbon monoxide had remained unchanged (15.8 mL/mm Hg/min [57% of predicted]). At 3 months after the procedure, spirometric improvements were still present (postbronchodilator FEV₁, 1.43 L [44% of predicted]; FEV₁/FVC ratio, 38%), whereas TLC (7.12 L [107% of predicted] and RV (3.19 L [139% of predicted]) had improved even further. Chest radiography at 1 month after the procedure showed an almost complete disappearance of the GEB (Fig 3), which was confirmed by CT scan of the chest at 3 months (Fig 4).

Discussion

This is the first reported case of successful treatment of a GEB using nonsurgical, bronchoscopic insertion of one-way EBVs. EBVs have been designed for palliative “nonsurgical lung volume reduction” treatment of severe heterogenous emphysema. The valve(s) allow drainage of air and secretions from the distal lung segment at expiration, while blocking air entry at inspiration, resulting in a redirection of airflow away from the blocked segments. Improvements in exercise capacity, pulmonary function, and quality of life have been observed in emphysematous patients, and are attributed to a decrease of (dynamic) hyperinflation. The principle of unidirectional airflow was used in this particular patient to “deflate” a GEB. Based on the same principle, EBVs have been used successfully in the bronchoscopic treatment of bronchopleural5 and bronchocutaneous6 fistulae.

The results of EBV insertion in this case report are

Figure 1. Chest radiograph at presentation showing a large increase of the left lower hemithorax with increased hyperlucency, suggestive of a GEB (“vanishing lung”).

Figure 2. CT scan of the thorax confirming the presence of a large (20 cm in diameter) GEB with compression atelectasis of the adjacent lung parenchyma.

Figure 3. Postoperative chest radiograph 1 month after the procedure showing a marked reduction of hyperinflation and an almost complete disappearance of the giant bulla.
Pending confirmation of success in other cases, as well as long-term safety and effectiveness data, bronchoscopic EBV treatment may become an attractive and valuable alternative to surgical bullectomy in patients with a GEB. Bronchoscopic EBV insertion indeed is easy, the insertion of valves is a safe procedure, and EBV insertion is easily and completely reversible since valves can be removed, if indicated, by forceps extraction using flexible bronchoscopy under local anesthesia.

REFERENCES

FIGURE 4. Postoperative CT scan 3 months after EBV placement showing a marked size reduction of the bulla.
Successful Treatment of a Giant Emphysematous Bulla by Bronchoscopic Placement of Endobronchial Valves
Marc Noppen, Jean-Claude Tellings, Tom Dekeukeleire, Bjorn Dieriks, Shane Hanon, Jan D’Haese, Marc Meysman and Walter Vincken
Chest 2006;130;1563-1565
DOI 10.1378/chest.130.5.1563

This information is current as of July 30, 2008

Updated Information & Services
Updated information and services, including high-resolution figures, can be found at:
http://chestjournal.org/cgi/content/full/130/5/1563

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://chestjournal.org/misc/reprints.shtml

Reprints
Information about ordering reprints can be found online:
http://chestjournal.org/misc/reprints.shtml

Email alerting service
Receive free email alerts when new articles cite this article sign up in the box at the top right corner of the online article.

Images in PowerPoint format
Figures that appear in CHEST articles can be downloaded for teaching purposes in PowerPoint slide format. See any online article figure for directions.